Building a Cognitive Business

When IBM’s Watson burst upon the scene in 2011, little did we know that it would kick off a new category of computing. Since that time, IBM has drawn most of its major divisions into the cognitive fold. That’s no surprise: cognitive computing is the ultimate Venn diagram, drawing on hundreds of technologies, from AI to Zookeeper, in order to create systems that “interact, understand, reason, and learn.” It was apparent at the Watson Analyst Day on May 23rd that IBM’s message has been refined, and that it has begun to gel. Just as we in the Cognitive Computing Consortium have moved from a vague understanding that we had something fundamentally new, so too has IBM’s understanding of what cognitive computing is, and what it’s good for become much more solid.

Realizing that the complexity of cognitive solutions can be a barrier to entry, IBM Watson has begun to offer “App Starter Kits” around clusters of technologies that are pre-integrated, like conversation agents, business intelligence, or audio analysis.  But markets require more than a single vendor, and we have already seen the rise of new vendors that are not part of the Watson Partner constellation. Being able to mix and match platforms, apps, and technologies will require new standards for not just formats but also storage and terminology if all types of data are to be exchanged easily. Making Watson’s cloud-based cognitive services like sentiment extraction, NLP, predictive analytics, or speech-to-text on both Bluemix and Twilio is a good step in this direction. So are the emerging sets of tools to guide adopters through data selection and modeling, analytics selection, visualization choices, and interaction design.

Two years ago, IBM launched its Watson Division. It now has 550 partners in 45 countries, thousands of developers, and programs in conjunction with 240 universities. It continues to add new languages and services. This is the beginning of a market, but we believe that this phenomenon is bigger than a single technology market. Rather, IT will evolve from the current deterministic computing era to one that is more nuanced. We already see elements of cognitive computing creeping into new versions of older applications—more intelligent interactions, better, more contextual recommendations, In this new world, we will add probabilistic approaches, AI, predictive analytics, learning systems, etc., but we will also retain what works from the old. That calls for a much deeper understanding of which technologies solve what problems the most effectively. What kinds of problems demand a cognitive computing approach? The processes that IBM delineated as possible elements of a cognitive solution are:

  1. Converse/interact
  2. Explore
  3. Analyze
  4. Personalize
  5. Diagnose/recommend

They also emphasized the importance of data—curated, annotated data that is normalized in some way using ontologies for both categorization and reasoning. This should come as no surprise to those of us from the online industry, who know that there is no substitute for the blood, sweat and tears that go into building a credible, usable collection of information. The question today is how to do this at scale, and at least semi-automatically, using NLP, categorizers, clustering engines, and learning systems, training sets, and whatever other tools we can throw at this barrier to sense making.

By far, the biggest advances in cognitive applications have been made in healthcare. With good reason. Medicine has a long history of information curation. Advances in ontology building, controlled vocabularies (normalization) and categorization date back to the 1950’s. PubMed and its predecessors had already built multilingual online collections of medical publications, clinical data, toxicology, and treatment guidelines as early as the 1980’s. These resources predate IBM Watson health and have enabled it to address health information problems with an existing well-curated knowledge base. Healthcare requires extreme accuracy, big data analytics, advanced patient-doctor-machine natural interaction, and a probabilistic approach to solving a medical problem. Because the amount of possibly relevant information is staggering, and the outcome is a matter of life and death, the reasons for investment in cognitive systems are obvious for healthcare insurers and providers alike. There are also, of course, billions of healthcare dollars at stake. Customer engagement, retail sales, mergers and acquisitions, investment banking, security and intelligence are not far behind in their promise, but they lack that initial bootstrapping of existing knowledge bases.

In summary, cognitive computing is moving from dream to reality. New tools and more packaged applications have reduced the complexity and the time to deploy. Early adopters are still at the experimentation stage, but from IBM and other vendors and services firms, we see gradual adoption with associated ROI, a virtuous loop that attracts yet more buying interest.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s